A Semiparametric Network Formation Model with Unobserved Linear Heterogeneity
Luis E. Candelaria
Papers from arXiv.org
Abstract:
This paper analyzes a semiparametric model of network formation in the presence of unobserved agent-specific heterogeneity. The objective is to identify and estimate the preference parameters associated with homophily on observed attributes when the distributions of the unobserved factors are not parametrically specified. This paper offers two main contributions to the literature on network formation. First, it establishes a new point identification result for the vector of parameters that relies on the existence of a special repressor. The identification proof is constructive and characterizes a closed-form for the parameter of interest. Second, it introduces a simple two-step semiparametric estimator for the vector of parameters with a first-step kernel estimator. The estimator is computationally tractable and can be applied to both dense and sparse networks. Moreover, I show that the estimator is consistent and has a limiting normal distribution as the number of individuals in the network increases. Monte Carlo experiments demonstrate that the estimator performs well in finite samples and in networks with different levels of sparsity.
Date: 2020-07, Revised 2020-08
New Economics Papers: this item is included in nep-net
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://arxiv.org/pdf/2007.05403 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2007.05403
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().