EconPapers    
Economics at your fingertips  
 

Convolution Bounds on Quantile Aggregation

Jose Blanchet, Henry Lam, Yang Liu and Ruodu Wang

Papers from arXiv.org

Abstract: Quantile aggregation with dependence uncertainty has a long history in probability theory with wide applications in finance, risk management, statistics, and operations research. Using a recent result on inf-convolution of quantile-based risk measures, we establish new analytical bounds for quantile aggregation which we call convolution bounds. Convolution bounds both unify every analytical result available in quantile aggregation and enlighten our understanding of these methods. These bounds are the best available in general. Moreover, convolution bounds are easy to compute, and we show that they are sharp in many relevant cases. They also allow for interpretability on the extremal dependence structure. The results directly lead to bounds on the distribution of the sum of random variables with arbitrary dependence. We discuss relevant applications in risk management and economics.

Date: 2020-07, Revised 2024-09
New Economics Papers: this item is included in nep-ecm and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://arxiv.org/pdf/2007.09320 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2007.09320

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2007.09320