EconPapers    
Economics at your fingertips  
 

A Novel Ensemble Deep Learning Model for Stock Prediction Based on Stock Prices and News

Yang Li and Yi Pan

Papers from arXiv.org

Abstract: In recent years, machine learning and deep learning have become popular methods for financial data analysis, including financial textual data, numerical data, and graphical data. This paper proposes to use sentiment analysis to extract useful information from multiple textual data sources and a blending ensemble deep learning model to predict future stock movement. The blending ensemble model contains two levels. The first level contains two Recurrent Neural Networks (RNNs), one Long-Short Term Memory network (LSTM) and one Gated Recurrent Units network (GRU), followed by a fully connected neural network as the second level model. The RNNs, LSTM, and GRU models can effectively capture the time-series events in the input data, and the fully connected neural network is used to ensemble several individual prediction results to further improve the prediction accuracy. The purpose of this work is to explain our design philosophy and show that ensemble deep learning technologies can truly predict future stock price trends more effectively and can better assist investors in making the right investment decision than other traditional methods.

Date: 2020-07
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2007.12620 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2007.12620

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2007.12620