Myopic equilibria, the spanning property, and subgame bundles
Robert Simon,
Stanislaw Spiez and
Henryk Torunczyk
Papers from arXiv.org
Abstract:
For a set-valued function $F$ on a compact subset $W$ of a manifold, spanning is a topological property that implies that $F(x) \ne 0$ for interior points $x$ of $W$. A myopic equilibrium applies when for each action there is a payoff whose functional value is not necessarily affine in the strategy space. We show that if the payoffs satisfy the spanning property, then there exist a myopic equilibrium (though not necessarily a Nash equilibrium). Furthermore, given a parametrized collection of games and the spanning property to the structure of payoffs in that collection, the resulting myopic equilibria and their payoffs have the spanning property with respect to that parametrization. This is a far reaching extension of the Kohberg-Mertens Structure Theorem. There are at least four useful applications, when payoffs are exogenous to a finite game tree (for example a finitely repeated game followed by an infinitely repeated game), when one wants to understand a game strategically entirely with behaviour strategies, when one wants to extends the subgame concept to subsets of a game tree that are known in common, and for evolutionary game theory. The proofs involve new topological results asserting that spanning is preserved by relevant operations on set-valued functions.
Date: 2020-07
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2007.12876 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2007.12876
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().