EconPapers    
Economics at your fingertips  
 

Simpler Proofs for Approximate Factor Models of Large Dimensions

Jushan Bai and Serena Ng ()

Papers from arXiv.org

Abstract: Estimates of the approximate factor model are increasingly used in empirical work. Their theoretical properties, studied some twenty years ago, also laid the ground work for analysis on large dimensional panel data models with cross-section dependence. This paper presents simplified proofs for the estimates by using alternative rotation matrices, exploiting properties of low rank matrices, as well as the singular value decomposition of the data in addition to its covariance structure. These simplifications facilitate interpretation of results and provide a more friendly introduction to researchers new to the field. New results are provided to allow linear restrictions to be imposed on factor models.

Date: 2020-08
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://arxiv.org/pdf/2008.00254 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2008.00254

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-04-07
Handle: RePEc:arx:papers:2008.00254