Dynamic optimal reinsurance and dividend-payout in finite time horizon
Chonghu Guan,
Zuo Quan Xu and
Rui Zhou
Papers from arXiv.org
Abstract:
This paper studies a dynamic optimal reinsurance and dividend-payout problem for an insurance company in a finite time horizon. The goal of the company is to maximize the expected cumulative discounted dividend payouts until bankruptcy or maturity which comes earlier. The company is allowed to buy reinsurance contracts dynamically over the whole time horizon to cede its risk exposure with other reinsurance companies. This is a mixed singular-classical control problem and the corresponding Hamilton-Jacobi-Bellman equation is a variational inequality with a fully nonlinear operator and subject to a gradient constraint. We obtain the $C^{2,1}$ smoothness of the value function and a comparison principle for its gradient function by the penalty approximation method so that one can establish an efficient numerical scheme to compute the value function. We find that the surplus-time space can be divided into three non-overlapping regions by a risk-magnitude and time-dependent reinsurance barrier and a time-dependent dividend-payout barrier. The insurance company should be exposed to a higher risk as its surplus increases; be exposed to the entire risk once its surplus upward crosses the reinsurance barrier; and pay out all its reserves exceeding the dividend-payout barrier. The estimated localities of these regions are also provided.
Date: 2020-08, Revised 2022-06
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2008.00391 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2008.00391
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().