Robust Sequential Search
Karl Schlag and
Andriy Zapechelnyuk
Papers from arXiv.org
Abstract:
We study sequential search without priors. Our interest lies in decision rules that are close to being optimal under each prior and after each history. We call these rules dynamically robust. The search literature employs optimal rules based on cutoff strategies that are not dynamically robust. We derive dynamically robust rules and show that their performance exceeds 1/2 of the optimum against binary environments and 1/4 of the optimum against all environments. This performance improves substantially with the outside option value, for instance, it exceeds 2/3 of the optimum if the outside option exceeds 1/6 of the highest possible alternative.
Date: 2020-08
New Economics Papers: this item is included in nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2008.00502 Latest version (application/pdf)
Related works:
Journal Article: Robust sequential search (2021) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2008.00502
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().