EconPapers    
Economics at your fingertips  
 

Log-modulated rough stochastic volatility models

Christian Bayer, Fabian Andsem Harang and Paolo Pigato

Papers from arXiv.org

Abstract: We propose a new class of rough stochastic volatility models obtained by modulating the power-law kernel defining the fractional Brownian motion (fBm) by a logarithmic term, such that the kernel retains square integrability even in the limit case of vanishing Hurst index $H$. The so-obtained log-modulated fractional Brownian motion (log-fBm) is a continuous Gaussian process even for $H = 0$. As a consequence, the resulting super-rough stochastic volatility models can be analysed over the whole range $0 \le H

Date: 2020-08, Revised 2021-05
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://arxiv.org/pdf/2008.03204 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2008.03204

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2008.03204