EconPapers    
Economics at your fingertips  
 

A Spatial Stochastic SIR Model for Transmission Networks with Application to COVID-19 Epidemic in China

Tatsushi Oka, Wei Wei and Dan Zhu

Papers from arXiv.org

Abstract: Governments around the world have implemented preventive measures against the spread of the coronavirus disease (COVID-19). In this study, we consider a multivariate discrete-time Markov model to analyze the propagation of COVID-19 across 33 provincial regions in China. This approach enables us to evaluate the effect of mobility restriction policies on the spread of the disease. We use data on daily human mobility across regions and apply the Bayesian framework to estimate the proposed model. The results show that the spread of the disease in China was predominately driven by community transmission within regions and the lockdown policy introduced by local governments curbed the spread of the pandemic. Further, we document that Hubei was only the epicenter of the early epidemic stage. Secondary epicenters, such as Beijing and Guangdong, had already become established by late January 2020, and the disease spread out to connected regions. The transmission from these epicenters substantially declined following the introduction of human mobility restrictions across regions.

Date: 2020-08, Revised 2020-08
New Economics Papers: this item is included in nep-cna, nep-hea and nep-net
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2008.06051 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2008.06051

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2008.06051