Kyle-Back Models with risk aversion and non-Gaussian Beliefs
Shreya Bose and
Ibrahim Ekren
Papers from arXiv.org
Abstract:
We show that the problem of existence of equilibrium in Kyle's continuous time insider trading model can be tackled by considering a forward-backward system coupled via an optimal transport type constraint at maturity. The forward component is a stochastic differential equation representing an endogenously determined state variable and the backward component is a quasilinear parabolic equation representing the pricing function. By obtaining a stochastic representation for the solution of such a system, we show the well-posedness of solutions and study the properties of the equilibrium obtained for small enough risk aversion parameter. In our model, the insider has exponential type utility and the belief of the market maker on the distribution of the price at final time can be non-Gaussian.
Date: 2020-08, Revised 2022-10
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2008.06377 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2008.06377
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().