Optimal Rating Design under Moral Hazard
Maryam Saeedi and
Ali Shourideh
Papers from arXiv.org
Abstract:
We study optimal rating design under moral hazard and strategic manipulation. An intermediary observes a noisy indicator of effort and commits to a rating policy that shapes market beliefs and pay. We characterize optimal ratings via concavification of a gain function. Optimal ratings depends on interaction of effort and risk: for activities that raise tail risk, optimal ratings exhibit lower censorship, pooling poor outcomes to insure and encourage risk-taking; for activities that reduce tail risk, upper censorship increases penalties for negligence. In multi-task environments with window dressing, less informative ratings deter manipulation. In redistributive test design, optimal tests exhibit mid-censorship.
Date: 2020-08, Revised 2026-01
New Economics Papers: this item is included in nep-des and nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://arxiv.org/pdf/2008.09529 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2008.09529
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().