Generalized Lee Bounds
Vira Semenova
Papers from arXiv.org
Abstract:
Lee (2009) is a common approach to bound the average causal effect in the presence of selection bias, assuming the treatment effect on selection has the same sign for all subjects. This paper generalizes Lee bounds to allow the sign of this effect to be identified by pretreatment covariates, relaxing the standard (unconditional) monotonicity to its conditional analog. Asymptotic theory for generalized Lee bounds is proposed in low-dimensional smooth and high-dimensional sparse designs. The paper also generalizes Lee bounds to accommodate multiple outcomes. It characterizes the sharp identified set for the causal parameter and proposes uniform Gaussian inference on the support function. The estimated bounds achieve nearly point-identification in JobCorps job training program (Lee (2009)), where unconditional monotonicity is unlikely to hold.
Date: 2020-08, Revised 2023-02
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/2008.12720 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2008.12720
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().