COVID-19: Tail Risk and Predictive Regressions
Walter Distaso,
Rustam Ibragimov,
Alexander Semenov and
Anton Skrobotov ()
Papers from arXiv.org
Abstract:
The paper focuses on econometrically justified robust analysis of the effects of the COVID-19 pandemic on financial markets in different countries across the World. It provides the results of robust estimation and inference on predictive regressions for returns on major stock indexes in 23 countries in North and South America, Europe, and Asia incorporating the time series of reported infections and deaths from COVID-19. We also present a detailed study of persistence, heavy-tailedness and tail risk properties of the time series of the COVID-19 infections and death rates that motivate the necessity in applications of robust inference methods in the analysis. Econometrically justified analysis is based on heteroskedasticity and autocorrelation consistent (HAC) inference methods, recently developed robust $t$-statistic inference approaches and robust tail index estimation.
Date: 2020-09, Revised 2021-10
New Economics Papers: this item is included in nep-ecm and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2009.02486 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2009.02486
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().