EconPapers    
Economics at your fingertips  
 

Dimension Reduction for High Dimensional Vector Autoregressive Models

Gianluca Cubadda and Alain Hecq

Papers from arXiv.org

Abstract: This paper aims to decompose a large dimensional vector autoregessive (VAR) model into two components, the first one being generated by a small-scale VAR and the second one being a white noise sequence. Hence, a reduced number of common components generates the entire dynamics of the large system through a VAR structure. This modelling, which we label as the dimension-reducible VAR, extends the common feature approach to high dimensional systems, and it differs from the dynamic factor model in which the idiosyncratic component can also embed a dynamic pattern. We show the conditions under which this decomposition exists. We provide statistical tools to detect its presence in the data and to estimate the parameters of the underlying small-scale VAR model. Based on our methodology, we propose a novel approach to identify the shock that is responsible for most of the common variability at the business cycle frequencies. We evaluate the practical value of the proposed methods by simulations as well as by an empirical application to a large set of US economic variables.

Date: 2020-09, Revised 2022-02
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://arxiv.org/pdf/2009.03361 Latest version (application/pdf)

Related works:
Journal Article: Dimension Reduction for High‐Dimensional Vector Autoregressive Models (2022) Downloads
Working Paper: Dimension Reduction for High Dimensional Vector Autoregressive Models (2022) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2009.03361

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-04-01
Handle: RePEc:arx:papers:2009.03361