Inference for high-dimensional exchangeable arrays
Harold D. Chiang,
Kengo Kato and
Yuya Sasaki
Papers from arXiv.org
Abstract:
We consider inference for high-dimensional separately and jointly exchangeable arrays where the dimensions may be much larger than the sample sizes. For both exchangeable arrays, we first derive high-dimensional central limit theorems over the rectangles and subsequently develop novel multiplier bootstraps with theoretical guarantees. These theoretical results rely on new technical tools such as Hoeffding-type decomposition and maximal inequalities for the degenerate components in the Hoeffiding-type decomposition for the exchangeable arrays. We exhibit applications of our methods to uniform confidence bands for density estimation under joint exchangeability and penalty choice for $\ell_1$-penalized regression under separate exchangeability. Extensive simulations demonstrate precise uniform coverage rates. We illustrate by constructing uniform confidence bands for international trade network densities.
Date: 2020-09, Revised 2021-07
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://arxiv.org/pdf/2009.05150 Latest version (application/pdf)
Related works:
Journal Article: Inference for High-Dimensional Exchangeable Arrays (2023) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2009.05150
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().