# A Dual Characterisation of Regulatory Arbitrage for Coherent Risk Measures

*Martin Herdegen* and
*Nazem Khan*

Papers from arXiv.org

**Abstract:**
We revisit mean-risk portfolio selection in a one-period financial market where risk is quantified by a positively homogeneous risk measure $\rho$ on $L^1$. We first show that under mild assumptions, the set of optimal portfolios for a fixed return is nonempty and compact. However, unlike in classical mean-variance portfolio selection, it can happen that no efficient portfolios exist. We call this situation regulatory arbitrage, and prove that it cannot be excluded - unless $\rho$ is as conservative as the worst-case risk measure. After providing a primal characterisation, we focus our attention on coherent risk measures, and give a necessary and sufficient characterisation for regulatory arbitrage. We show that the presence or absence of regulatory arbitrage for $\rho$ is intimately linked to the interplay between the set of equivalent martingale measures (EMMs) for the discounted risky assets and the set of absolutely continuous measures in the dual representation of $\rho$. A special case of our result shows that the market does not admit regulatory arbitrage for Expected Shortfall at level $\alpha$ if and only if there exists an EMM $\mathbb{Q} \approx \mathbb{P}$ such that $\Vert \frac{\text{d}\mathbb{Q}}{\text{d}\mathbb{P}} \Vert_{\infty}

**Date:** 2020-09

**New Economics Papers:** this item is included in nep-rmg

**References:** View references in EconPapers View complete reference list from CitEc

**Citations:** Track citations by RSS feed

**Downloads:** (external link)

http://arxiv.org/pdf/2009.05498 Latest version (application/pdf)

**Related works:**

This item may be available elsewhere in EconPapers: Search for items with the same title.

**Export reference:** BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text

**Persistent link:** https://EconPapers.repec.org/RePEc:arx:papers:2009.05498

Access Statistics for this paper

More papers in Papers from arXiv.org

Bibliographic data for series maintained by arXiv administrators ().