Nonclassical Measurement Error in the Outcome Variable
Christoph Breunig and
Stephan Martin
Papers from arXiv.org
Abstract:
We study a semi-/nonparametric regression model with a general form of nonclassical measurement error in the outcome variable. We show equivalence of this model to a generalized regression model. Our main identifying assumptions are a special regressor type restriction and monotonicity in the nonlinear relationship between the observed and unobserved true outcome. Nonparametric identification is then obtained under a normalization of the unknown link function, which is a natural extension of the classical measurement error case. We propose a novel sieve rank estimator for the regression function and establish its rate of convergence. In Monte Carlo simulations, we find that our estimator corrects for biases induced by nonclassical measurement error and provides numerically stable results. We apply our method to analyze belief formation of stock market expectations with survey data from the German Socio-Economic Panel (SOEP) and find evidence for nonclassical measurement error in subjective belief data.
Date: 2020-09, Revised 2021-05
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2009.12665 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2009.12665
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().