An AI approach to measuring financial risk
Lining Yu,
Wolfgang Karl H\"ardle,
Lukas Borke and
Thijs Benschop
Papers from arXiv.org
Abstract:
AI artificial intelligence brings about new quantitative techniques to assess the state of an economy. Here we describe a new measure for systemic risk: the Financial Risk Meter (FRM). This measure is based on the penalization parameter (lambda) of a linear quantile lasso regression. The FRM is calculated by taking the average of the penalization parameters over the 100 largest US publicly traded financial institutions. We demonstrate the suitability of this AI based risk measure by comparing the proposed FRM to other measures for systemic risk, such as VIX, SRISK and Google Trends. We find that mutual Granger causality exists between the FRM and these measures, which indicates the validity of the FRM as a systemic risk measure. The implementation of this project is carried out using parallel computing, the codes are published on www.quantlet.de with keyword FRM. The R package RiskAnalytics is another tool with the purpose of integrating and facilitating the research, calculation and analysis methods around the FRM project. The visualization and the up-to-date FRM can be found on hu.berlin/frm.
Date: 2020-09
New Economics Papers: this item is included in nep-big, nep-cmp, nep-fmk and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in The Singapore Economic Review (2019): pp. 1 to 21
Downloads: (external link)
http://arxiv.org/pdf/2009.13222 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2009.13222
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().