EconPapers    
Economics at your fingertips  
 

Propagation of minimality in the supercooled Stefan problem

Christa Cuchiero, Stefan Rigger and Sara Svaluto-Ferro

Papers from arXiv.org

Abstract: Supercooled Stefan problems describe the evolution of the boundary between the solid and liquid phases of a substance, where the liquid is assumed to be cooled below its freezing point. Following the methodology of Delarue, Nadtochiy and Shkolnikov, we construct solutions to the one-phase one-dimensional supercooled Stefan problem through a certain McKean-Vlasov equation, which allows to define global solutions even in the presence of blow-ups. Solutions to the McKean-Vlasov equation arise as mean-field limits of particle systems interacting through hitting times, which is important for systemic risk modeling. Our main contributions are: (i) we prove a general tightness theorem for the Skorokhod M1-topology which applies to processes that can be decomposed into a continuous and a monotone part. (ii) We prove propagation of chaos for a perturbed version of the particle system for general initial conditions. (iii) We prove a conjecture of Delarue, Nadtochiy and Shkolnikov, relating the solution concepts of so-called minimal and physical solutions, showing that minimal solutions of the McKean-Vlasov equation are physical whenever the initial condition is integrable.

Date: 2020-10, Revised 2022-06
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2010.03580 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2010.03580

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2010.03580