EconPapers    
Economics at your fingertips  
 

Jump Models with delay -- option pricing and logarithmic Euler-Maruyama scheme

Nishant Agrawal and Yaozhong Hu

Papers from arXiv.org

Abstract: In this paper, we obtain the existence, uniqueness and positivity of the solution to delayed stochastic differential equations with jumps. This equation is then applied to model the price movement of the risky asset in a financial market and the Black-Scholes formula for the price of European options is obtained together with the hedging portfolios. The option price is evaluated analytically at the last delayed period by using the Fourier transformation technique. But in general, there is no analytical expression for the option price. To evaluate the price numerically we then use the Monte-Carlo method. To this end, we need to simulate the delayed stochastic differential equations with jumps. We propose a logarithmic Euler-Maruyama scheme to approximate the equation and prove that all the approximations remain positive and the rate of convergence of the scheme is proved to be $0.5$.

Date: 2020-10, Revised 2020-10
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2010.04287 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2010.04287

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2010.04287