Combining Observational and Experimental Data to Improve Efficiency Using Imperfect Instruments
George Z. Gui
Papers from arXiv.org
Abstract:
Randomized controlled trials generate experimental variation that can credibly identify causal effects, but often suffer from limited scale, while observational datasets are large, but often violate desired identification assumptions. To improve estimation efficiency, I propose a method that leverages imperfect instruments - pretreatment covariates that satisfy the relevance condition but may violate the exclusion restriction. I show that these imperfect instruments can be used to derive moment restrictions that, in combination with the experimental data, improve estimation efficiency. I outline estimators for implementing this strategy, and show that my methods can reduce variance by up to 50%; therefore, only half of the experimental sample is required to attain the same statistical precision. I apply my method to a search listing dataset from Expedia that studies the causal effect of search rankings on clicks, and show that the method can substantially improve the precision.
Date: 2020-10, Revised 2023-12
New Economics Papers: this item is included in nep-ecm and nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2010.05117 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2010.05117
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().