EconPapers    
Economics at your fingertips  
 

Tight Bounds for a Class of Data-Driven Distributionally Robust Risk Measures

Derek Singh and Shuzhong Zhang

Papers from arXiv.org

Abstract: This paper expands the notion of robust moment problems to incorporate distributional ambiguity using Wasserstein distance as the ambiguity measure. The classical Chebyshev-Cantelli (zeroth partial moment) inequalities, Scarf and Lo (first partial moment) bounds, and semideviation (second partial moment) in one dimension are investigated. The infinite dimensional primal problems are formulated and the simpler finite dimensional dual problems are derived. A principal motivating question is how does data-driven distributional ambiguity affect the moment bounds. Towards answering this question, some theory is developed and computational experiments are conducted for specific problem instances in inventory control and portfolio management. Finally some open questions and suggestions for future research are discussed.

Date: 2020-10, Revised 2020-10
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2010.05398 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2010.05398

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2010.05398