A Deep Learning Framework for Predicting Digital Asset Price Movement from Trade-by-trade Data
Qi Zhao
Papers from arXiv.org
Abstract:
This paper presents a deep learning framework based on Long Short-term Memory Network(LSTM) that predicts price movement of cryptocurrencies from trade-by-trade data. The main focus of this study is on predicting short-term price changes in a fixed time horizon from a looking back period. By carefully designing features and detailed searching for best hyper-parameters, the model is trained to achieve high performance on nearly a year of trade-by-trade data. The optimal model delivers stable high performance(over 60% accuracy) on out-of-sample test periods. In a realistic trading simulation setting, the prediction made by the model could be easily monetized. Moreover, this study shows that the LSTM model could extract universal features from trade-by-trade data, as the learned parameters well maintain their high performance on other cryptocurrency instruments that were not included in training data. This study exceeds existing researches in term of the scale and precision of data used, as well as the high prediction accuracy achieved.
Date: 2020-10
New Economics Papers: this item is included in nep-big, nep-cmp, nep-fmk, nep-mst and nep-pay
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2010.07404 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2010.07404
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().