Empirical likelihood and uniform convergence rates for dyadic kernel density estimation
Harold D. Chiang and
Bing Yang Tan
Papers from arXiv.org
Abstract:
This paper studies the asymptotic properties of and alternative inference methods for kernel density estimation (KDE) for dyadic data. We first establish uniform convergence rates for dyadic KDE. Secondly, we propose a modified jackknife empirical likelihood procedure for inference. The proposed test statistic is asymptotically pivotal regardless of presence of dyadic clustering. The results are further extended to cover the practically relevant case of incomplete dyadic data. Simulations show that this modified jackknife empirical likelihood-based inference procedure delivers precise coverage probabilities even with modest sample sizes and with incomplete dyadic data. Finally, we illustrate the method by studying airport congestion in the United States.
Date: 2020-10, Revised 2022-05
New Economics Papers: this item is included in nep-ecm and nep-net
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2010.08838 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2010.08838
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().