Time-varying Forecast Combination for High-Dimensional Data
Bin Chen and
Kenwin Maung
Papers from arXiv.org
Abstract:
In this paper, we propose a new nonparametric estimator of time-varying forecast combination weights. When the number of individual forecasts is small, we study the asymptotic properties of the local linear estimator. When the number of candidate forecasts exceeds or diverges with the sample size, we consider penalized local linear estimation with the group SCAD penalty. We show that the estimator exhibits the oracle property and correctly selects relevant forecasts with probability approaching one. Simulations indicate that the proposed estimators outperform existing combination schemes when structural changes exist. Two empirical studies on inflation forecasting and equity premium prediction highlight the merits of our approach relative to other popular methods.
Date: 2020-10
New Economics Papers: this item is included in nep-ecm, nep-ets, nep-for and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2010.10435 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2010.10435
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().