EconPapers    
Economics at your fingertips  
 

Worst-case sensitivity

Jun-ya Gotoh, Michael Jong Kim and Andrew E. B. Lim

Papers from arXiv.org

Abstract: We introduce the notion of Worst-Case Sensitivity, defined as the worst-case rate of increase in the expected cost of a Distributionally Robust Optimization (DRO) model when the size of the uncertainty set vanishes. We show that worst-case sensitivity is a Generalized Measure of Deviation and that a large class of DRO models are essentially mean-(worst-case) sensitivity problems when uncertainty sets are small, unifying recent results on the relationship between DRO and regularized empirical optimization with worst-case sensitivity playing the role of the regularizer. More generally, DRO solutions can be sensitive to the family and size of the uncertainty set, and reflect the properties of its worst-case sensitivity. We derive closed-form expressions of worst-case sensitivity for well known uncertainty sets including smooth $\phi$-divergence, total variation, "budgeted" uncertainty sets, uncertainty sets corresponding to a convex combination of expected value and CVaR, and the Wasserstein metric. These can be used to select the uncertainty set and its size for a given application.

Date: 2020-10
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2010.10794 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2010.10794

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2010.10794