EconPapers    
Economics at your fingertips  
 

The Efficiency Gap

Timo Dimitriadis, Tobias Fissler and Johanna F. Ziegel

Papers from arXiv.org

Abstract: Parameter estimation via M- and Z-estimation is broadly considered to be equally powerful in semiparametric models for one-dimensional functionals. This is due to the fact that, under sufficient regularity conditions, there is a one-to-one relation between the corresponding objective functions - strictly consistent loss functions and oriented strict identification functions - via integration and differentiation. When dealing with multivariate functionals such as multiple moments, quantiles, or the pair (Value at Risk, Expected Shortfall), this one-to-one relation fails due to integrability conditions: Not every identification function possesses an antiderivative. The most important implication of this failure is an efficiency gap: The most efficient Z-estimator often outperforms the most efficient M-estimator, implying that the semiparametric efficiency bound cannot be attained by the M-estimator in these cases. We show that this phenomenon arises for pairs of quantiles at different levels and for the pair (Value at Risk, Expected Shortfall), where we illustrate the gap through extensive simulations.

Date: 2020-10
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/2010.14146 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2010.14146

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2020-11-21
Handle: RePEc:arx:papers:2010.14146