EconPapers    
Economics at your fingertips  
 

McKean-Vlasov equations involving hitting times: blow-ups and global solvability

Erhan Bayraktar, Gaoyue Guo, Wenpin Tang and Yuming Zhang

Papers from arXiv.org

Abstract: This paper is concerned with the analysis of blow-ups for two McKean-Vlasov equations involving hitting times. Let $(B(t); \, t \ge 0)$ be standard Brownian motion, and $\tau:= \inf\{t \ge 0: X(t) \le 0\}$ be the hitting time to zero of a given process $X$. The first equation is $X(t) = X(0) + B(t) - \alpha \mathbb{P}(\tau \le t)$. We provide a simple condition on $\alpha$ and the distribution of $X(0)$ such that the corresponding Fokker-Planck equation has no blow-up, and thus the McKean-Vlasov dynamics is well-defined for all time $t \ge 0$. Our approach relies on a connection between the McKean-Vlasov equation and the supercooled Stefan problem, as well as several comparison principles. The second equation is $X(t) = X(0) + \beta t + B(t) + \alpha \log \mathbb{P}(\tau > t)$, whose Fokker-Planck equation is non-local. We prove that for $\beta > 0$ sufficiently large and $\alpha$ no greater than a sufficiently small positive constant, there is no blow-up and the McKean-Vlasov dynamics is well-defined for all time $t \ge 0$. The argument is based on a new transform, which removes the non-local term, followed by a relative entropy analysis.

Date: 2020-10, Revised 2023-07
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2010.14646 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2010.14646

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2010.14646