The Frequency of Convergent Games under Best-Response Dynamics
Samuel C. Wiese and
Torsten Heinrich
Papers from arXiv.org
Abstract:
Generating payoff matrices of normal-form games at random, we calculate the frequency of games with a unique pure strategy Nash equilibrium in the ensemble of $n$-player, $m$-strategy games. These are perfectly predictable as they must converge to the Nash equilibrium. We then consider a wider class of games that converge under a best-response dynamic, in which each player chooses their optimal pure strategy successively. We show that the frequency of convergent games goes to zero as the number of players or the number of strategies goes to infinity. In the $2$-player case, we show that for large games with at least $10$ strategies, convergent games with multiple pure strategy Nash equilibria are more likely than games with a unique Nash equilibrium. Our novel approach uses an $n$-partite graph to describe games.
Date: 2020-11
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2011.01052 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2011.01052
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().