Non-Equilibrium Skewness, Market Crises, and Option Pricing: Non-Linear Langevin Model of Markets with Supersymmetry
Igor Halperin
Papers from arXiv.org
Abstract:
This paper presents a tractable model of non-linear dynamics of market returns using a Langevin approach. Due to non-linearity of an interaction potential, the model admits regimes of both small and large return fluctuations. Langevin dynamics are mapped onto an equivalent quantum mechanical (QM) system. Borrowing ideas from supersymmetric quantum mechanics (SUSY QM), a parameterized ground state wave function (WF) of this QM system is used as a direct input to the model, which also fixes a non-linear Langevin potential. Using a two-component Gaussian mixture as a ground state WF with an asymmetric double well potential produces a tractable low-parametric model with interpretable parameters, referred to as the NES (Non-Equilibrium Skew) model. Supersymmetry (SUSY) is then used to find time-dependent solutions of the model in an analytically tractable way. Additional approximations give rise to a final practical version of the NES model, where real-measure and risk-neutral return distributions are given by three component Gaussian mixtures. This produces a closed-form approximation for option pricing in the NES model by a mixture of three Black-Scholes prices, providing accurate calibration to option prices for either benign or distressed market environments, while using only a single volatility parameter. These results stand in stark contrast to the most of other option pricing models such as local, stochastic, or rough volatility models that need more complex specifications of noise to fit the market data.
Date: 2020-11, Revised 2021-12
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2011.01417 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2011.01417
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().