Inference under Superspreading: Determinants of SARS-CoV-2 Transmission in Germany
Patrick W. Schmidt
Papers from arXiv.org
Abstract:
Superspreading complicates the study of SARS-CoV-2 transmission. I propose a model for aggregated case data that accounts for superspreading and improves statistical inference. In a Bayesian framework, the model is estimated on German data featuring over 60,000 cases with date of symptom onset and age group. Several factors were associated with a strong reduction in transmission: public awareness rising, testing and tracing, information on local incidence, and high temperature. Immunity after infection, school and restaurant closures, stay-at-home orders, and mandatory face covering were associated with a smaller reduction in transmission. The data suggests that public distancing rules increased transmission in young adults. Information on local incidence was associated with a reduction in transmission of up to 44% (95%-CI: [40%, 48%]), which suggests a prominent role of behavioral adaptations to local risk of infection. Testing and tracing reduced transmission by 15% (95%-CI: [9%,20%]), where the effect was strongest among the elderly. Extrapolating weather effects, I estimate that transmission increases by 53% (95%-CI: [43%, 64%]) in colder seasons.
Date: 2020-11
New Economics Papers: this item is included in nep-hea
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2011.04002 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2011.04002
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().