Reinforced Deep Markov Models With Applications in Automatic Trading
Tadeu A. Ferreira
Papers from arXiv.org
Abstract:
Inspired by the developments in deep generative models, we propose a model-based RL approach, coined Reinforced Deep Markov Model (RDMM), designed to integrate desirable properties of a reinforcement learning algorithm acting as an automatic trading system. The network architecture allows for the possibility that market dynamics are partially visible and are potentially modified by the agent's actions. The RDMM filters incomplete and noisy data, to create better-behaved input data for RL planning. The policy search optimisation also properly accounts for state uncertainty. Due to the complexity of the RKDF model architecture, we performed ablation studies to understand the contributions of individual components of the approach better. To test the financial performance of the RDMM we implement policies using variants of Q-Learning, DynaQ-ARIMA and DynaQ-LSTM algorithms. The experiments show that the RDMM is data-efficient and provides financial gains compared to the benchmarks in the optimal execution problem. The performance improvement becomes more pronounced when price dynamics are more complex, and this has been demonstrated using real data sets from the limit order book of Facebook, Intel, Vodafone and Microsoft.
Date: 2020-11
New Economics Papers: this item is included in nep-big, nep-cmp, nep-fmk and nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2011.04391 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2011.04391
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().