EconPapers    
Economics at your fingertips  
 

Fat tails arise endogenously in asset prices from supply/demand, with or without jump processes

Gunduz Caginalp

Papers from arXiv.org

Abstract: We show that the quotient of Levy processes of jump-diffusion type has a fat-tailed distribution. An application is to price theory in economics. We show that fat tails arise endogenously from modeling of price change based on an excess demand analysis resulting in a quotient of arbitrarily correlated demand and supply whether or not jump discontinuities are present. The assumption is that supply and demand are described by drift terms, Brownian (i.e., Gaussian) and compound Poisson jump processes. If $P^{-1}dP/dt$ (the relative price change in an interval $dt$) is given by a suitable function of relative excess demand, $\left( \mathcal{D}% -\mathcal{S}\right) /\mathcal{S}$ (where $\mathcal{D}$ and $\mathcal{S}$ are demand and supply), then the distribution has tail behavior $F\left( x\right) \sim x^{-\zeta}$ for a power $\zeta$ that depends on the function $G$ in $P^{-1}dP/dt=G\left( \mathcal{D}/\mathcal{S}\right) $. For $G\left( x\right) \sim\left\vert x\right\vert ^{1/q}$ one has $\zeta=q.$ The empirical data for assets typically yields a value, $\zeta\tilde{=}3,$ or $\ \zeta \in\left[ 3,5\right] $ for some markets. The discrepancy between the empirical result and theory never arises if one models price dynamics using basic economics methodology, i.e., generalized Walrasian adjustment, rather than the usual starting point for classical finance which assumes a normal distribution of price changes. The function $G$ is deterministic, and can be calibrated with a smaller data set. The results establish a simple link between the decay exponent of the density function and the price adjustment function, a feature that can improve methodology for risk assessment. The mathematical results can be applied to other problems involving the relative difference or quotient of Levy processes of jump-diffusion type.

Date: 2020-11, Revised 2021-03
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Published in Mathematics 6 4811 4846 2021

Downloads: (external link)
http://arxiv.org/pdf/2011.08275 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2011.08275

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2011.08275