EconPapers    
Economics at your fingertips  
 

Visual Time Series Forecasting: An Image-driven Approach

Srijan Sood, Zhen Zeng, Naftali Cohen, Tucker Balch and Manuela Veloso

Papers from arXiv.org

Abstract: Time series forecasting is essential for agents to make decisions. Traditional approaches rely on statistical methods to forecast given past numeric values. In practice, end-users often rely on visualizations such as charts and plots to reason about their forecasts. Inspired by practitioners, we re-imagine the topic by creating a novel framework to produce visual forecasts, similar to the way humans intuitively do. In this work, we leverage advances in deep learning to extend the field of time series forecasting to a visual setting. We capture input data as an image and train a model to produce the subsequent image. This approach results in predicting distributions as opposed to pointwise values. We examine various synthetic and real datasets with diverse degrees of complexity. Our experiments show that visual forecasting is effective for cyclic data but somewhat less for irregular data such as stock price. Importantly, when using image-based evaluation metrics, we find the proposed visual forecasting method to outperform various numerical baselines, including ARIMA and a numerical variation of our method. We demonstrate the benefits of incorporating vision-based approaches in forecasting tasks -- both for the quality of the forecasts produced, as well as the metrics that can be used to evaluate them.

Date: 2020-11, Revised 2021-11
New Economics Papers: this item is included in nep-big, nep-cmp, nep-ecm, nep-ets and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2011.09052 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2011.09052

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2011.09052