EconPapers    
Economics at your fingertips  
 

Tempered stable distributions and finite variation Ornstein-Uhlenbeck processes

Nicola Cufaro Petroni and Piergiacomo Sabino

Papers from arXiv.org

Abstract: Constructing \Levy-driven Ornstein-Uhlenbeck processes is a task closely related to the notion of self-decomposability. In particular, their transition laws are linked to the properties of what will be hereafter called the \emph{a-reminder} of their self-decomposable stationary laws. In the present study we fully characterize the L\'evy triplet of these a-reminder s and we provide a general framework to deduce the transition laws of the finite variation Ornstein-Uhlenbeck processes associated with tempered stable distributions. We focus finally on the subclass of the exponentially-modulated tempered stable laws and we derive the algorithms for an exact generation of the skeleton of Ornstein-Uhlenbeck processes related to such distributions, with the further advantage of adopting a procedure computationally more efficient than those already available in the existing literature.

Date: 2020-11
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2011.09147 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2011.09147

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2011.09147