Use Bagging Algorithm to Improve Prediction Accuracy for Evaluation of Worker Performances at a Production Company
Hamza Saad
Papers from arXiv.org
Abstract:
Many workers at the production department of Libyan Textile Company work with different performances. Plan of company management is paying the money according to the specific performance and quality requirements for each worker. Thus, it is important to predict the accurate evaluation of workers to extract the knowledge for management, how much money it will pay as salary and incentive. For example, if the evaluation is average, then management of the company will pay part of the salary. If the evaluation is good, then it will pay full salary, moreover, if the evaluation is excellent, then it will pay salary plus incentive percentage. Twelve variables with 121 instances for each variable collected to predict the evaluation of the process for each worker. Before starting classification, feature selection used to predict the influential variables which impact the evaluation process. Then, four algorithms of decision trees used to predict the output and extract the influential relationship between inputs and output. To make sure get the highest accuracy, ensemble algorithm (Bagging) used to deploy four algorithms of decision trees and predict the highest prediction result 99.16%. Standard errors for four algorithms were very small; this means that there is a strong relationship between inputs (7 variables) and output (Evaluation). The curve of (Receiver operating characteristics) for algorithms gave a high-level specificity and sensitivity, and Gain charts were very close to together. According to the results, management of the company should take a logic decision about the evaluation of production process and extract the important variables that impact the evaluation.
Date: 2020-11
New Economics Papers: this item is included in nep-cmp
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2011.12343 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2011.12343
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().