Nowcasting Networks
Marc Chataigner,
Stephane Crepey and
Jiang Pu
Papers from arXiv.org
Abstract:
We devise a neural network based compression/completion methodology for financial nowcasting. The latter is meant in a broad sense encompassing completion of gridded values, interpolation, or outlier detection, in the context of financial time series of curves or surfaces (also applicable in higher dimensions, at least in theory). In particular, we introduce an original architecture amenable to the treatment of data defined at variable grid nodes (by far the most common situation in financial nowcasting applications, so that PCA or classical autoencoder methods are not applicable). This is illustrated by three case studies on real data sets. First, we introduce our approach on repo curves data (with moving time-to-maturity as calendar time passes). Second, we show that our approach outperforms elementary interpolation benchmarks on an equity derivative surfaces data set (with moving time-to-maturity again). We also obtain a satisfying performance for outlier detection and surface completion. Third, we benchmark our approach against PCA on at-the-money swaption surfaces redefined at constant expiry/tenor grid nodes. Our approach is then shown to perform as well as (even if not obviously better than) the PCA which, however, is not be applicable to the native, raw data defined on a moving time-to-expiry grid).
Date: 2020-11
New Economics Papers: this item is included in nep-big
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2011.13687 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2011.13687
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().