Inference in Regression Discontinuity Designs under Monotonicity
Koohyun Kwon and
Soonwoo Kwon
Papers from arXiv.org
Abstract:
We provide an inference procedure for the sharp regression discontinuity design (RDD) under monotonicity, with possibly multiple running variables. Specifically, we consider the case where the true regression function is monotone with respect to (all or some of) the running variables and assumed to lie in a Lipschitz smoothness class. Such a monotonicity condition is natural in many empirical contexts, and the Lipschitz constant has an intuitive interpretation. We propose a minimax two-sided confidence interval (CI) and an adaptive one-sided CI. For the two-sided CI, the researcher is required to choose a Lipschitz constant where she believes the true regression function to lie in. This is the only tuning parameter, and the resulting CI has uniform coverage and obtains the minimax optimal length. The one-sided CI can be constructed to maintain coverage over all monotone functions, providing maximum credibility in terms of the choice of the Lipschitz constant. Moreover, the monotonicity makes it possible for the (excess) length of the CI to adapt to the true Lipschitz constant of the unknown regression function. Overall, the proposed procedures make it easy to see under what conditions on the underlying regression function the given estimates are significant, which can add more transparency to research using RDD methods.
Date: 2020-11
New Economics Papers: this item is included in nep-ecm and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://arxiv.org/pdf/2011.14216 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2011.14216
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().