EconPapers    
Economics at your fingertips  
 

Inference in mixed causal and noncausal models with generalized Student's t-distributions

Francesco Giancaterini and Alain Hecq

Papers from arXiv.org

Abstract: The properties of Maximum Likelihood estimator in mixed causal and noncausal models with a generalized Student's t error process are reviewed. Several known existing methods are typically not applicable in the heavy-tailed framework. To this end, a new approach to make inference on causal and noncausal parameters in finite sample sizes is proposed. It exploits the empirical variance of the generalized Student's-t, without the existence of population variance. Monte Carlo simulations show a good performance of the new variance construction for fat tail series. Finally, different existing approaches are compared using three empirical applications: the variation of daily COVID-19 deaths in Belgium, the monthly wheat prices, and the monthly inflation rate in Brazil.

Date: 2020-12, Revised 2022-11
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://arxiv.org/pdf/2012.01888 Latest version (application/pdf)

Related works:
Journal Article: Inference in mixed causal and noncausal models with generalized Student’s t-distributions (2025) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2012.01888

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-04-01
Handle: RePEc:arx:papers:2012.01888