EconPapers    
Economics at your fingertips  
 

Forecasting the Olympic medal distribution during a pandemic: a socio-economic machine learning model

Christoph Schlembach, Sascha Schmidt (), Dominik Schreyer and Linus Wunderlich

Papers from arXiv.org

Abstract: Forecasting the number of Olympic medals for each nation is highly relevant for different stakeholders: Ex ante, sports betting companies can determine the odds while sponsors and media companies can allocate their resources to promising teams. Ex post, sports politicians and managers can benchmark the performance of their teams and evaluate the drivers of success. To significantly increase the Olympic medal forecasting accuracy, we apply machine learning, more specifically a two-staged Random Forest, thus outperforming more traditional na\"ive forecast for three previous Olympics held between 2008 and 2016 for the first time. Regarding the Tokyo 2020 Games in 2021, our model suggests that the United States will lead the Olympic medal table, winning 120 medals, followed by China (87) and Great Britain (74). Intriguingly, we predict that the current COVID-19 pandemic will not significantly alter the medal count as all countries suffer from the pandemic to some extent (data inherent) and limited historical data points on comparable diseases (model inherent).

Date: 2020-12, Revised 2021-06
New Economics Papers: this item is included in nep-big, nep-cmp, nep-cul, nep-for and nep-spo
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2012.04378 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2012.04378

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-30
Handle: RePEc:arx:papers:2012.04378