EconPapers    
Economics at your fingertips  
 

Estimation of Large Financial Covariances: A Cross-Validation Approach

Vincent Tan and Stefan Zohren

Papers from arXiv.org

Abstract: We introduce a novel covariance estimator for portfolio selection that adapts to the non-stationary or persistent heteroskedastic environments of financial time series by employing exponentially weighted averages and nonlinearly shrinking the sample eigenvalues through cross-validation. Our estimator is structure agnostic, transparent, and computationally feasible in large dimensions. By correcting the biases in the sample eigenvalues and aligning our estimator to more recent risk, we demonstrate that our estimator performs well in large dimensions against existing state-of-the-art static and dynamic covariance shrinkage estimators through simulations and with an empirical application in active portfolio management.

Date: 2020-12, Revised 2023-01
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2012.05757 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2012.05757

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2012.05757