EconPapers    
Economics at your fingertips  
 

Effective Algorithms for Optimal Portfolio Deleveraging Problem with Cross Impact

Hezhi Luo, Yuanyuan Chen, Xianye Zhang, Duan Li and Huixian Wu
Additional contact information
Hezhi Luo: deceased
Yuanyuan Chen: deceased
Xianye Zhang: deceased
Duan Li: deceased

Papers from arXiv.org

Abstract: We investigate the optimal portfolio deleveraging (OPD) problem with permanent and temporary price impacts, where the objective is to maximize equity while meeting a prescribed debt/equity requirement. We take the real situation with cross impact among different assets into consideration. The resulting problem is, however, a non-convex quadratic program with a quadratic constraint and a box constraint, which is known to be NP-hard. In this paper, we first develop a successive convex optimization (SCO) approach for solving the OPD problem and show that the SCO algorithm converges to a KKT point of its transformed problem. Second, we propose an effective global algorithm for the OPD problem, which integrates the SCO method, simple convex relaxation and a branch-and-bound framework, to identify a global optimal solution to the OPD problem within a pre-specified $\epsilon$-tolerance. We establish the global convergence of our algorithm and estimate its complexity. We also conduct numerical experiments to demonstrate the effectiveness of our proposed algorithms with both the real data and the randomly generated medium- and large-scale OPD problem instances.

Date: 2020-12, Revised 2021-01
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2012.07368 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2012.07368

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2012.07368