Weak Identification with Bounds in a Class of Minimum Distance Models
Gregory Cox
Papers from arXiv.org
Abstract:
When parameters are weakly identified, bounds on the parameters may provide a valuable source of information. Existing weak identification estimation and inference results are unable to combine weak identification with bounds. Within a class of minimum distance models, this paper proposes identification-robust inference that incorporates information from bounds when parameters are weakly identified. The inference is based on limit theory that combines weak identification theory with parameter-on-the-boundary theory. This paper demonstrates the role of the bounds and identification-robust inference in two example factor models. This paper also demonstrates the identification-robust inference in an empirical application, a factor model for parental investments in children.
Date: 2020-12, Revised 2022-12
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/2012.11222 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2012.11222
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().