A machine learning solver for high-dimensional integrals: Solving Kolmogorov PDEs by stochastic weighted minimization and stochastic gradient descent through a high-order weak approximation scheme of SDEs with Malliavin weights
Riu Naito and
Toshihiro Yamada
Papers from arXiv.org
Abstract:
The paper introduces a very simple and fast computation method for high-dimensional integrals to solve high-dimensional Kolmogorov partial differential equations (PDEs). The new machine learning-based method is obtained by solving a stochastic weighted minimization with stochastic gradient descent which is inspired by a high-order weak approximation scheme for stochastic differential equations (SDEs) with Malliavin weights. Then solutions to high-dimensional Kolmogorov PDEs or expectations of functionals of solutions to high-dimensional SDEs are accurately approximated without suffering from the curse of dimensionality. Numerical examples for PDEs and SDEs up to 100 dimensions are shown by using second and third-order discretization schemes in order to demonstrate the effectiveness of our method.
Date: 2020-12, Revised 2021-02
New Economics Papers: this item is included in nep-big and nep-cmp
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2012.12346 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2012.12346
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().