Bias-Aware Inference in Regularized Regression Models
Timothy Armstrong,
Michal Koles\'ar and
Soonwoo Kwon
Papers from arXiv.org
Abstract:
We consider inference on a scalar regression coefficient under a constraint on the magnitude of the control coefficients. A class of estimators based on a regularized propensity score regression is shown to exactly solve a tradeoff between worst-case bias and variance. We derive confidence intervals (CIs) based on these estimators that are bias-aware: they account for the possible bias of the estimator. Under homoskedastic Gaussian errors, these estimators and CIs are near-optimal in finite samples for MSE and CI length. We also provide conditions for asymptotic validity of the CI with unknown and possibly heteroskedastic error distribution, and derive novel optimal rates of convergence under high-dimensional asymptotics that allow the number of regressors to increase more quickly than the number of observations. Extensive simulations and an empirical application illustrate the performance of our methods.
Date: 2020-12, Revised 2023-08
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2012.14823 Latest version (application/pdf)
Related works:
Working Paper: Bias-Aware Inference in Regularized Regression Models (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2012.14823
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().