EconPapers    
Economics at your fingertips  
 

Estimation of Tempered Stable L\'{e}vy Models of Infinite Variation

Jos\'e E. Figueroa-L\'opez, Ruoting Gong and Yuchen Han

Papers from arXiv.org

Abstract: We propose a new method for the estimation of a semiparametric tempered stable L\'{e}vy model. The estimation procedure combines iteratively an approximate semiparametric method of moment estimator, Truncated Realized Quadratic Variations (TRQV), and a newly found small-time high-order approximation for the optimal threshold of the TRQV of tempered stable processes. The method is tested via simulations to estimate the volatility and the Blumenthal-Getoor index of the generalized CGMY model as well as the integrated volatility of a Heston-type model with CGMY jumps. The method outperforms other efficient alternatives proposed in the literature when working with a L\'evy process (i.e., the volatility is constant), or when the index of jump intensity $Y$ is larger than $3/2$ in the presence of stochastic volatility.

Date: 2021-01, Revised 2022-02
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2101.00565 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2101.00565

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2101.00565