The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies
Anna Baiardi and
Andrea A. Naghi
Papers from arXiv.org
Abstract:
A new and rapidly growing econometric literature is making advances in the problem of using machine learning methods for causal inference questions. Yet, the empirical economics literature has not started to fully exploit the strengths of these modern methods. We revisit influential empirical studies with causal machine learning methods and identify several advantages of using these techniques. We show that these advantages and their implications are empirically relevant and that the use of these methods can improve the credibility of causal analysis.
Date: 2021-01
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://arxiv.org/pdf/2101.00878 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2101.00878
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().