Partial Identification in Nonseparable Binary Response Models with Endogenous Regressors
Jiaying Gu and
Thomas M. Russell
Papers from arXiv.org
Abstract:
This paper considers (partial) identification of a variety of counterfactual parameters in binary response models with possibly endogenous regressors. Our framework allows for nonseparable index functions with multi-dimensional latent variables, and does not require parametric distributional assumptions. We leverage results on hyperplane arrangements and cell enumeration from the literature on computational geometry in order to provide a tractable means of computing the identified set. We demonstrate how various functional form, independence, and monotonicity assumptions can be imposed as constraints in our optimization procedure to tighten the identified set. Finally, we apply our method to study the effects of health insurance on the decision to seek medical treatment.
Date: 2021-01, Revised 2022-07
New Economics Papers: this item is included in nep-dcm, nep-ecm, nep-hea and nep-ias
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2101.01254 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2101.01254
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().