EconPapers    
Economics at your fingertips  
 

Recurrent Neural Networks for Stochastic Control Problems with Delay

Jiequn Han and Ruimeng Hu

Papers from arXiv.org

Abstract: Stochastic control problems with delay are challenging due to the path-dependent feature of the system and thus its intrinsic high dimensions. In this paper, we propose and systematically study deep neural networks-based algorithms to solve stochastic control problems with delay features. Specifically, we employ neural networks for sequence modeling (\emph{e.g.}, recurrent neural networks such as long short-term memory) to parameterize the policy and optimize the objective function. The proposed algorithms are tested on three benchmark examples: a linear-quadratic problem, optimal consumption with fixed finite delay, and portfolio optimization with complete memory. Particularly, we notice that the architecture of recurrent neural networks naturally captures the path-dependent feature with much flexibility and yields better performance with more efficient and stable training of the network compared to feedforward networks. The superiority is even evident in the case of portfolio optimization with complete memory, which features infinite delay.

Date: 2021-01, Revised 2021-06
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://arxiv.org/pdf/2101.01385 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2101.01385

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2101.01385