EconPapers    
Economics at your fingertips  
 

Deep learning for efficient frontier calculation in finance

Xavier Warin

Papers from arXiv.org

Abstract: We propose deep neural network algorithms to calculate efficient frontier in some Mean-Variance and Mean-CVaR portfolio optimization problems. We show that we are able to deal with such problems when both the dimension of the state and the dimension of the control are high. Adding some additional constraints, we compare different formulations and show that a new projected feedforward network is able to deal with some global constraints on the weights of the portfolio while outperforming classical penalization methods. All developed formulations are compared in between. Depending on the problem and its dimension, some formulations may be preferred.

Date: 2021-01, Revised 2022-02
New Economics Papers: this item is included in nep-big, nep-cmp and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2101.02044 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2101.02044

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2101.02044